skip to main content


Search for: All records

Creators/Authors contains: "Vidal, Luciano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thunderstorms in southeastern South America (SESA) stand out in satellite observations as being among the strongest on Earth in terms of satellite-based convective proxies, such as lightning flash rate per storm, the prevalence for extremely tall, wide convective cores and broad stratiform regions. Accurately quantifying when and where strong convection is initiated presents great interest in operational forecasting and convective system process studies due to the relationship between convective storms and severe weather phenomena. This paper generates a novel methodology to determine convective initiation (CI) signatures associated with extreme convective systems, including extreme events. Based on the well-established area-overlapping technique, an adaptive brightness temperature threshold for identification and backward tracking with infrared data is introduced in order to better identify areas of deep convection associated with and embedded within larger cloud clusters. This is particularly important over SESA because ground-based weather radar observations are currently limited to particular areas. Extreme rain precipitation features (ERPFs) from Tropical Rainfall Measurement Mission are examined to quantify the full satellite-observed life cycle of extreme convective events, although this technique allows examination of other intense convection proxies such as the identification of overshooting tops. CI annual and diurnal cycles are analyzed and distinctive behaviors are observed for different regions over SESA. It is found that near principal mountain barriers, a bimodal diurnal CI distribution is observed denoting the existence of multiple CI triggers, while convective initiation over flat terrain has a maximum frequency in the afternoon. 
    more » « less
  2. Abstract

    This work examines a severe weather event that took place over central Argentina on 11 December 2018. The evolution of the storm from its initiation, rapid organization into a supercell, and eventual decay was analyzed with high‐temporal resolution observations. This work provides insight into the spatio‐temporal co‐evolution of storm kinematics (updraft area and lifespan), cloud‐top cooling rates, and lightning production that led to severe weather. The analyzed storm presented two convective periods with associated severe weather. An overall decrease in cloud‐top local minima IR brightness temperature (MinIR) and lightning jump (LJ) preceded both periods. LJs provided the highest lead time to the occurrence of severe weather, with the ground‐based lightning networks providing the maximum warning time of around 30 min. Lightning flash counts from the Geostationary Lightning Mapper (GLM) were underestimated when compared to detections from ground‐based lightning networks. Among the possible reasons for GLM's lower detection efficiency were an optically dense medium located above lightning sources and the occurrence of flashes smaller than GLM's footprint. The minimum MinIR provided the shorter warning time to severe weather occurrence. However, the secondary minima in MinIR that preceded the absolute minima improved this warning time by more than 10 min. Trends in MinIR for time scales shorter than 6 min revealed shorter cycles of fast cooling and warming, which provided information about the lifecycle of updrafts within the storm. The advantages of using observations with high‐temporal resolution to analyze the evolution and intensity of convective storms are discussed.

     
    more » « less